STATISTICS AND EVIDENCE SYNTHESIS

- 1. What is evidence synthesis?
 - 2. Why do we need it?
 - 3. How to do it?

Sharon-Lise T. Normand
Harvard Medical School & Harvard School of Public Health

Silver Spring, MD: March 7, 2012

EXAMPLES

DEVICE	Esthetic Devices Silicone Gel-Filled Breast Implants	Pediatric Therapeutic Devices Vagel Nerve Stimulators	Adult Therapeutic Devices Lap Band	
Indication	Augmentation (≥ 22 yrs old) or reconstruction	Refractory epilepsy patients (approved in US for ≥ 12 years old)	Weight reduction in severely obese subjects (BMI \geq 40 or BMI \geq 35+comorbids)	
Device	Silicone shell filled with silicone gel	Electrical pulses applied to left vagel nerve to send signals to brain; device = generator + leads	Silicone gastric band, access port, and tubing to connect port to band	
Alternatives	Saline implant (≥ 18 yrs old)	Resective surgery; ketogenic diet	Behaviorial therapy; R _x ; jawwiring, hypnosis; surgery (gastric bypass or vertical banded)	
Outcomes	Bra cup size change, chest size, quality of life; safety = rash, wrinkling, malposition, leakage	No new AED drug and no "significant" dose change within 1-year; and ≥ 50% decrease from baseline in seizure frequency at 1-month	Weight loss; safety = digestive problems, band slippage or dilation; port displacement; port or tube leakage	
Challenges in Post Market Setting	Patients don't want to be identified; case ascertainment problems	Premarket data are sparse and sometimes do not exist	Indications expanded to less obese patients	

EVIDENCE SYNTHESIS

Evidence synthesis involves the development of techniques to combine multiple sources of quantitative evidence.

- this is beyond meta-analysis
- individual data, cohort data, etc.
- need to define evidence

WHAT ARE THE SPECIFIC QUESTIONS?

- What do we expect to see in the postmarket setting for a new device?
 - use the PMA data alone?
 - identify target population (patients, providers, settings)
 - quantify the relative prevalence of covariates in PMA population and target population (to infer expected effectiveness)
 - outcomes completely missing for target population so can only calculate predictions
- What information should be used?
 - Several different outcomes (index by m)
 - Several different device manufacturers (index by k)
 - Several different patient groups (index by j)
 - Several data sources (index by i)

BORROWING STRENGTH

Suppose $j=1,2,\cdots,n_k$ observations within device **group** k for $k=1,2,\cdots,K$. Let $y_k=$ mean outcome for a patient group implanted with device k.

$$y_k \sim N(\alpha_k, \sigma_y^2)$$
 and $\alpha_k \sim N(\mu_\alpha, \sigma_\alpha^2)$ (1)

For each device k, the conditional (posterior) estimate of α_k is

$$\hat{\alpha}_k \mid y, \mu_\alpha = \omega_k \mu_\alpha + (1 - \omega_k) \bar{y}_k \tag{2}$$

weighted average of the within-device outcomes (\bar{y}_k) and between-device model for outcomes (μ_{α})

EXAMPLE

Total Hip Implants

Device Characteristic	Device	Outcome	Evidence Sources			
			РМА	Literature	Registry	Claims*
Ceramic on Ceramic	1	HHS	\checkmark			No UDI No HHS
		Revision	V			
		AE	\checkmark			
	2	HHS	√			
		Revision	\checkmark			
		AE	V			
Metal on Metal	3	HHS	Not			No UDI No HHS
		Revision	available			
		AE				
	4	etc	√			

BORROWING STRENGTH

k may be a class of device defined by characteristic of device or may denote the manufacturer

$$\left(\frac{\mathsf{No}}{\mathsf{Pooling}}\right) \ 0 \leq \ \omega_k \ = \ \left(\frac{\frac{\sigma_y^2}{n_k}}{\sigma_{lpha}^2 + \frac{\sigma_y^2}{n_k}}\right) \ \leq \ 1 \ \left(\frac{\mathsf{Complete}}{\mathsf{Pooling}}\right)$$

- ► Sampling Variability: $\frac{\sigma_y}{\sqrt{n_k}}$
- ▶ Signal = α_k
- ▶ **Strength**: $Var(\alpha_k) = (1 \omega_k) \frac{\sigma_y^2}{n_k} \le Var(\bar{y}_k)$

ASSUMPTIONS

1. Exchangeability: conditional on X, ordering of (size) device effects is indistinguishable

$$\alpha_k \sim N(\mu_\alpha, \sigma_\alpha^2)$$
 (3)

- While the effects themselves may differ, we can consider them drawn from a common distribution
- Coherence: assumptions to accommodate indirect comparisons
 - want effect of device k on outcome to be the same, regardless of what it is compared against
 - ▶ $var(\xi_{kl})$ close to 0 where ξ_{kl} is **change** in α_k when compared to α_l
- Variance components: prior distributions to characterize uncertainty in strengths of relationships

CONCLUDING REMARKS: HOW RELATED TO 522 STUDIES

- Increasing need for prediction and extrapolation of both safety and effectiveness outcomes
 - To determine expected outcomes
 - ▶ To bolster inferences when pre-market data are sparse
- Increasing need for incorporation of uncertainty
 - Accommodated through probability distributions
 - Critically important in the analysis of surveillance studies
- Quantifying evidence
 - ▶ Need to measure the **evidence** for a hypothesis
 - ▶ Bayes factors provide quantitative measures of evidence